Monatshefte für Chemie 111, 607-617 (1980)

Monatshefte für Chemie

© by Springer-Verlag 1980

Thermodynamische Untersuchungen an *n*-Alkan/*n*-Alkin-Systemen

2. Isobare Dampf-Flüssigkeits-Gleichgewichte

Enn Otsa^{a, *}, L. S. Kudrjawzewa^a, O. G. Eisen^a und E. M. Piotrowskaja^b

^a Institut für Chemie, Akademie der Wissenschaften der Estnischen SSR, Tallinn, UdSSR

^b Chemische Fakultät der Universität, Leningrad, UdSSR

(Eingegangen 19. April 1979. Angenommen 19. Juni 1979)

Thermodynamic Studies on n-Alkane—n-Alkyne Systems. 2. Isobaric Vapour-Liquid Equilibria

The vapour-liquid equilibrium data obtained from isobaric *t-x*-measurements have been used for calculation of the group UNIFAC parameters and excess free enthalpy G^E of binary mixtures *n*-alkanes with isomeric *n*-alkynes. The UNIFAC model gives satisfactory predictions for the systems studied. The temperature dependence of G^E was estimated on the basis of the heats of mixing measured earlier. The influence of the position of triple bond in the molecules of *n*-alkynes on the excess thermodynamic functions is considered.

(Keywords: n-Alkynes; Phase equilibria)

Verwendete Bezeichnungen

 x_i Molenbruch der Komponente *i* in der flüssigen Phase y_i Molenbruch der Komponente *i* in der Dampfphase P (Torr) Dampfdruck (1 Torr = 133,3224 Pa) t (°C), T (K) Temperatur γ_i Aktivitätskoeffizient der Komponente *i* in der flüssigen Phase P_i^0 Dampfdruck der reinen Komponente *i* A_i, B_i (°C), C_i (°C) Konstanten der Antoine-Gleichung a_{nnit} UNIFAC-Wechselwirkungsparameter R_k Volumenparameter der Strukturgruppe k Q_k Oberflächenparameter der Strukturgruppe k Λ_{ik} Konstanten der Wilson-Gleichung G^E (J/mol) Freie Zusatzmischungsenthalpie H^E (J/mol·K) Zusatzmischungsenthalpie bei $x_i = 0,5$. Tabelle 1. Die Konstanten der Gleichung $t(^{\circ}C) = ax_1^2 + bx_1 + c$

Binäre		$760{ m Torr}$			$600\mathrm{Torr}$			$400\mathrm{Torr}$			$200\mathrm{Torr}$	
Systeme	а	9	э	ø	q	с	a	p	с	a	p	o
" Haven(1)												
n-1-Hexin(1) n-1-Hexin(2)	10,28	-12,93	71,39	10,20	-12,95	64, 14	10,10	13,11	52,65	10,07	-13,45	35,06
n-mepuan(1) n-1-Heptin(2) m Horten(1)	8,08	-9,46	99,82	8,03	9,50	92,02	7,95	-9,62	79,60	7,78	9,70	60, 61
n-1 $n-2$ -Heptin(2)	7,11	-21,02	112, 39	7,38	-21,37	104,56	7,24	-21,23	91,98	7,29	-21,12	72,61
n-0 ctin(1) n-1-0 ctin(2)	6,56	-7,02	126, 25	6,54		118,01	6,63	-7,39	104,86	6,59		84,58
$n-2-0$ $n_1(1)$ $n-2-0$ $n_2(1)$	6,72	-18,99	138,04	6,93	-19, 13	129, 72	7,03	-19,28	116,41	7,25	-19,33	95,77
n-Octin(1) n-3-Octin(2) n Octin(1)	5,44	-12,56	132, 83	5,77	-12,96	124,72	5,37		111,43	5,42	-13,07	91,30
n-4-Octin(1)	5,80	11,41	131, 37	6,09	11,70	123, 17	5,58	-11,39	109,93	5,55	— 11,74	89,84
n-1-Nonim(1) n-1-Nonim(2)	5,30	-5,34	150, 79	5,25	-5,35	142, 23	5,50	-5,76	128,56	5,18	-5,64	107,33
n-3-Nonin(2)	3,72	9,80	156,72	3,54	9,52	148,06	3,79	9,78	134, 26	3,70	-9,80	113,00

Zur Untersuchung der isobaren Konzentrationsabhängigkeit der Siedetemperaturen in binären Gemischen wurde das früher beschriebene Halbmikroebulliometer¹ benutzt. Die Siedetemperaturen wurden bei den Drücken 760, 600, 400 und 200 Torr für die binären Systeme *n*-Hexan—*n*-1-Hexin, *n*-Heptan—*n*-*i*-Heptin (mit i = 1, 2), *n*-Octan—*n*-*i*-Octin (mit i = 1, 2, 3, 4) und *n*-Nonan—*n*-*i*-Nonin (mit i = 1, 3) gemessen.

Aus diesen Messungen wurde folgende empirische Gleichung ermittelt

$$t\,(^{\circ}C) = ax_1^2 + bx_1 + c,\tag{1}$$

deren Konstanten in Tab. 1 angeführt sind. Sie reproduziert die gemessenen Werte mit einem mittleren Fehler von 0.03 °C für alle berechneten Werte.

Das Verlaufen der t-x-Kurven weist darauf hin, daß in dem untersuchten Druckbereich in den Systemen Alkan—1-Alkin ein Azeotrop entsteht, dessen Zusammensetzung sich unter der Bedingung $\left(\frac{\mathrm{d}t}{\mathrm{d}x}\right) = 0$ aus Gl. (1) ermitteln läßt $\left(x_1 = -\frac{b}{2a}\right)$. In dem System Octan—4-Octin ist ein Azeotrop nur bei den Drücken 760 und 600 Torr zu finden. Die übrigen Systeme besitzen infolge des größeren Unterschieds in den Siedetemperaturen der Komponenten keinen Azeotrop. Wie unten gezeigt wird, sind auch die (positiven) Abweichungen vom idealen Verhalten bei den Systemen Alkan—1-Alkin größer, als bei den übrigen Systemen bei gleichen Drücken.

Die verwendeten Substanzen werden durch in Tab. 2 angegebenen Daten als rein charakterisiert. Diese Tabelle enthält auch die zur Berechnung der Dampfzusammensetzung und Aktivitätskoeffizienten notwendigen Konstanten der *Antoine*-Gleichung.

Die Dampfmolenbrüche wurden durch Integration der Differentialgleichung

$$dy = \frac{y_1 (1 - y_1) \left[\frac{B_1 x_1}{(t + C_1)^2} + \frac{B_2 x_2}{(t + C_2)^2} \right]}{x_1 - y_1} dT$$
(2)

nach Runge-Kutta mit einer Schrittweite von 0,005 berechnet.

Wie von uns früher² gezeigt wurde, kann die Mischungswärme in den zu untersuchenden Gemischen bei der Herleitung dieser Gleichung vernachlässigt werden. Die Integration erfolgte in Richtung der fallenden Temperaturen.

Die daraus nach

$$\gamma_i = \frac{y_i P}{x_i P_i^0} \tag{3}$$

	R	i una analmanna	umaonmocana a	mumeun v mun uses	D-annom V Ian Na	revenuery 10g F _i =	C + t
Substanz	Reinheits- grad %	n_{D}^{20}	d_4^{20}	Siede- temperatur °C	$\operatorname{Konstant}_A$	en der <i>Antoine-</i> C <i>B</i> /°C	∄leichung C/°C
n-Hexan	99,92	1,37508	0,6593	68,70	6,83033	1143.64	220,860
n-1-Hexin	99,96	1,39884	0,7147	71,34	6,73726	1069.24	205,923
$n ext{-Heptan}$	99,97	1,38774	0,6836	98,35	6,76509	1189.20	207,733
n-1-Heptin	99,97	1,40882	0,7328	99,84	6,71828	1145, 21	198,589
n-2-Heptin	99,98	1,42165	0,7476	112,47	7,02407	1342, 14	211,460
$n ext{-}Octan$	66'66	1,39761	0,7026	125,81	7,03291	1427, 31	218,017
n-1-0 et in	99,94	1,41606	0,7463	126,30	6,92850	1345,64	206,152
n-2-Octin	99,95	1,42785	0,7593	138,09	7,26672	1588, 42	224,074
n-3-Octin	99,98	1,42513	0,7507	132,86	6,87835	1312,41	195,386
n-4-Octin	99,95	1,42468	0,7506	131,41	6,77045	1245,31	188,731
n-Nonan	99,94	1,40547	0,7177	150,73	7,33126	1695,09	230, 121
n-1-Nonin	99,93	1,42202	0,7575	150,80	7,53521	1826, 16	241,552
n-3-Nonin	99,96	1,43021	0,7624	156,67	7,11999	1537,69	206,059

P and Konstraton der Antrine-Gleichnun log P_{\circ}° 2000 Tahalla 9 Phusikalische Rinenschaften der Versuchssuhstam

berechneten Aktivitätskoeffizienten wurden der Berechnung der UNIFAC-Wechselwirkungsparameter der Strukturgruppen mit der dreifachen Bindung zugrunde gelegt. Für das System Octan—1-Octin wurden zusätzlich Berechnungen aus t, x-Daten mit der Wilson-Gleichung durchgeführt. Folgende Konstanten wurden ermittelt:

P (Torr)	Λ_{12}	Λ ₂₁
760	0,7871	1,0449
600	0,8430	0,9702
400	0,8787	0,9190
200	0,8282	0,9422

Die erhaltenen Ergebnisse sind in ihrer Genauigkeit mit den nach Gl. (2) und (3) berechneten durchaus vergleichbar.

Da die Berechnung der Virialkoeffizienten der Alkine aus Mangel an kritischen Daten viele Unsicherheiten enthält, wurde ideales Gasverhalten für den Dampf vorausgesetzt.

Bei der Ermittlung der Wechselwirkungsgruppenbeiträge wurden die CH- und CH₃-Gruppen als CH₂-Gruppen berücksichtigt. Zur Berechnung der Wechselwirkungsparameter der Gruppen CH₂ und $C \equiv CH(I)$ wurden als Referenzsysteme Alkan—*n*-1-Alkin C₇—C₉ bei den vier Drücken ausgewählt. Aus den Gleichgewichtsdaten der Systeme Octan—2-Octin und Nonan—3-Nonin bei 760, 600 und 400 Torr wurden die Parameter der Gruppen CH₂ und $C \equiv C(II)$ berechnet. Zur Ermittlung mittlerer Wechselwirkungsparameter (III) wurden alle obengenannten Ausgangsdaten benutzt. Die Volumen- und Oberflächenparameter wurden aus den Beiträgen der Strukturgruppen^{3,4} ermittelt:

Struktur- gruppe k	R_k	Q_k	${f Struktur} \ gruppe k$	R_k	Q_k
$ \begin{array}{c} HC \equiv C \\ C \equiv C \end{array} $	$1,292 \\ 1,0613$	$1,088 \\ 0,784$	$\overset{\rm CH_3}{_{\rm CH_2}}$	$0,9011 \\ 0,6744$	$\begin{array}{c} 0,848\\ 0,540 \end{array}$

	I	I	I	II	I
$^{a}\mathrm{CH}_{2},\mathrm{C}\!\equiv\!\mathrm{CH}$	$a_{\rm C}\!\equiv\!{\rm CH,CH}_2$	$^{a}\mathrm{CH}_{2},\mathrm{C}\!\equiv\!\mathrm{C}$	$^{a}\mathrm{C}\!\equiv\!\mathrm{C},\mathrm{CH}_{2}$	${}^{a}\mathrm{CH}_{2},\mathrm{C}\!\equiv\!\mathrm{C}(\mathrm{H})$	$^{a}\mathrm{C}\!\equiv\!\mathrm{C}(\mathrm{H}),\mathrm{CH}_{2}$
227,0	23,63	270,3	17,31	274,1	

Die berechneten a_{nm} -Werte sind unten angeführt.

		760 TA	orr			$200\mathrm{Tor}$	r	
x_1	t_{exp}	ber. nach Gl. (2)	UNI	FAC	t_{exp}	ber. nach Gl. (2)	INU	FAC
		y1	t	y_1		y,	t	y_1
			h-n	exan-n-1-He	xin ^a			
0,151	69,73	0,192	69,63	0, 193	33, 31	0,210	33,38	0,201
0,252	68,86	0,302	68,88	0,298	32,19	0.324	32.57	0.316
0,351	68,08	0,399	68,03	0,393	31,47	0,423	31,94	0.415
0.513	67, 43	0,534	67, 67	0,534	30,84	0,555	31,33	0.552
0,642	67, 31	0,638	67, 49	0,640	30,63	0,644	31,07	0.656
0,700	67, 35	0,688	67,56	0,694	30,63	0,693	31,02	0,704
0,742	67,40	0,724	67, 62	0,732	30,66	0,726	30,98	0.735
0,863	68,02	0,841	67,96	0,844	30,90	0,839	31,16	0,855
			n-He	ptann-2-He	ptin ^b			
0,099	110,28	0,153	110,23	0,157	70,59	0,168	70.57	0.176
0,303	106,67	0,407	106,56	0,406	66,78	0,438	66,65	0,439
0,500	103,65	0,609	103,64	0,603	63,86	0,641	63,78	0,634
),699	101, 17	0,775	101,27	0,771	61,42	0,798	61,46	0,792
0,901	99,23	0.923	99,30	0.925	59, 55	0,931	59,53	0.932

612

	Bere	schnet nach G	łl. (2)		UNIFAC ^a			UNIFAC ^b	
x_1	y_1	μια (9) Υ1	Υ2	y_1	γ_1	γ_2	y_1	Υı	Υ2
				760	Torr				
0,000	0,000	1,131	1,000	0,000	1,133	1,000	0,000	1,115	1,000
0,199	0,242	1,097	1,005	0,238	1,082	1,005	0,235	1,070	1,004
).349	0,400	1,071	1.015	0.394	1,054	1,015	0,391	1,046	1,013
0.499	0.543	1,045	1,033	0.535	1,032	1,031	0,532	1,028	1,027
).645	0,676	1,023	1,064	0,668	1,016	1,053	0,667	1,014	1,045
0.800	0.810	1,007	1,109	0.812	1,005	1,083	0,812	1,004	1,071
1,000	1,000	1,000	1,173	1,000	1,000	1,129	1,000	1,000	1,110
				200	Torr				
000.0	0.000	1.136	1,000	0,000	1,134	1,000	0,000	1,128	1,000
(199	0,258	1,115	1,006	0,251	1,094	1,005	0,248	1,081	1,005
),349	0,420	1,086	1,016	0,409	1,063	1,017	0,406	1,054	1,015
.499	0.563	1,056	1,038	0.552	1,036	1,035	0,549	1,032	1,031
,645	0,692	1,029	1,076	0,681	1,018	1,060	0,680	1,016	1,052
0,800	0,818	1,008	1,136	0,818	1,006	1,095	0,817	1,005	1,083
000	1,000	1,000	1,207	1,000	1,000	1,155	1,000	1,000	1,127

Thermodynamische Untersuchungen

Unter Verwendung der erhaltenen Gruppenbeiträge wurden die Dampf-Flüssigkeits-Gleichgewichtsdaten der in Tab. 3 und 4 aufgeführten binären Systeme berechnet. Ein Vergleich der in Tab.3 angegebenen experimentell ermittelten Siedetemperaturen und nach Gl. (2) berechneten Dampfmolenbrüche mit den nach dem UNIFAC-Modell berechneten zeigt, daß für die Systeme Hexan—1-Hexin und Heptan-2-Heptin eine gute Übereinstimmung vorhanden ist. Damit ist eine Vorausberechnung für die aus Strukturgruppen der Art $ext{CH}_2$ und C≡CH oder C≡C bestehenden Systeme möglich. Vergleicht man die Tab.4 das in für System Octan-4-Octin aufgeführten Berechnungsergebnisse, so findet man, daß die Verwendung der mittleren Wechselwirkungsparameter (III) etwas größere Abweichungen von den nach Gl. (2) und (3) ermittelten Werten hervorruft.

Die thermodynamischen Zusatzmischungseffekte der hier untersuchten Systeme wurden bei der Temperatur 318,15 K verglichen. Da die Temperaturbereiche der Gleichgewichts- und Mischungswärmemessungen⁵ sich recht wesentlich unterscheiden, wurde man darauf angewiesen, die freie Zusatzmischungsenthalpie bei der Temperatur 318,15 K unter bestimmten Annahmen zu berechnen. Man benutzte dazu die Gleichung

$$G_{(T)}^{E} = G_{(T_{0})}^{E} \frac{T}{T_{0}} + d\left(1 - \frac{T}{T_{0}}\right) - ZT \ln \frac{T}{T_{0}}$$
(4)

und als Ausgangsdaten die Siedetemperaturen T_0 und freie Zusatzmischungsenthalpien $G^E_{(T_0)}$ der equimolaren Mischungen bei dem Druck 200 Torr. Für die sechs Systeme liegen auch gemessene Mischungswärme bei 298,15 und 318,15 K vor⁵, aus denen folgende Werte der Konstanten d und Z ihrer linearen Temperaturabhängigkeit $(H^E = d + ZT)$ ermittelt wurden:

System	d	Z
n-Heptan—n-1-Heptin	3898	5,6
n-Octan-n-1-Octin	3734	-5,6
n-Octan— n -2-Octin	3198	-5,8
n-Octan— n -3-Octin	3293	-6,2
n-Octan— n -4-Octin	3408	-6,6
n-Nonan— n -1-Nonin	3510	-5,4

Die Genauigkeit der Berechnung wurde an Hand der aus den nach Gl. (2) und (3) berechneten Aktivitätskoeffizienten ermittelten $G_{0,5}^E$. Werten bei den Drücken 760 und 400 Torr geprüft. Diese Werte sind mit den nach Gl. (4) berechneten in Tab. 5 zusammengestellt. Man

i-Alkin	
llkann-	
nen n-k	
en Syster	
),5 in de	
$bei \ x = 0$	
(J mol)	
Mischungseffekte (
Thermodynamische	
Tabelle 5.	

Tabelle 5. Then	rmodynamisci	te Mischn	ungseffel	cte (J/mol) bei $x =$	= 0,5 in	den System	en n-Alk	V-i-u uv	lkin	
Binäre Gemische	$T_{ m exp}$	$G_{0,5}^{E0\mathrm{Torr}}$	$G^E_{ m ber}$	$T_{ m exp}^{-4}$	$\substack{00\ \mathrm{Torr}\\ G^E_{0,5}}$	$G^{E}_{ m ber}$	$T_{ m exp}^{200{ m To}}$	${}^{\mathrm{rr}}_{G^E_{0,5}}$	$G^E_{ m ber}$	$^{15\mathrm{K}}_{\mathrm{H}^{E}_{\mathrm{exp}}}$	TS^E
n-Heptan-n-1-Heptin	370,26	170	179	349,97	197	193	330,86	209	221	521	300
n-Octann-1-Octin	397,53	150	159	375,99	163	168	355,60	181	208	479	271
n-Octan- n -2-Octin	403,38	111	103	381.68	116	110	361,07	118	141	338	197
n-Octan $-n$ -3-Octin	401,15	118	109	379,60	122	114	359,27	121	141	330	189
n-Octan— n -4-Octin	400,27	127	128	378, 79	133	132	358,53	137	155	324	172
n-Nonan $-n$ -1-Nonin	422,54	125	118	400,21	134	129	378,95	140	182	446	264

615

entnimmt daraus, daß die Abweichungen zwischen diesen Werten nicht sehr wesentlich sind.

Die nach Gl. (4) berechnete freie Zusatzmischungsenthalpie $G_{0,5}^E$, kalorimetrisch gemessene Mischungswärme $H_{0,5}^E$ und die daraus ermittelte Zusatzmischungsentropie $T S_{0,5}^E$ sind für 318,15 K in Tab. 5 angegeben. Für sechs Systeme gilt bei x = 0.5 $H^E > T S^E > G^E$. Die positiven Werte von thermodynamischen Mischungseffekte dürfen

Abb. 1. Mittlere molare Exzeßeigenschaften der Systeme bei 318,15 K; A n-Octan—n-1-Octin; B n-Octan—n-4-Octin; \bigcirc experimentelle Werte⁵; — — berechnete Kurven; ---- extrapolierte Kurven

hauptsächlich auf die Sprengung der "Komplexe" der reinen *n*-Alkine zurückzuführen sein.

Unter Voraussetzung, daß die Konstanten d und Z von der Konzentration unabhängig sind, wurden die G^E -Werte im Molenbruchbereich 0,25—0,75 der Systeme n-Octan—n-1-Octin und n-Oetan—n-4-Octin für 318,15 K berechnet. G^E , H^E und $T S^E$ sind für beide Systeme in Abb. 1 als Funktion x_1 wiedergegeben. Alle Kurven verlaufen angenähert symmetrisch in bezug auf die Ordinate bei x = 0,5. Aus der Abb. 1 erkennt man die quantitative Unterschiede in den Mischungseffekte der beiden Systeme. Um diesen Unterschied zu klären und um allgemein herauszufinden, welcher Art die Vorgänge sind, die in entstehenden Mischungen vorlaufen, sind weitere Experimente mit den Systemen aus isomeren Alkinen und Mischkomponenten anderer Struktur erforderlich und in Vorbereitung.

Literatur

- ¹ W. Michkelson, H. Kirss, L. Kudrjawzewa und O. Eisen, Fluid Phase Equilibria 1, 201 (1977/1978).
- ² E. Otsa, J. Kirjanen und L. Kudrjawzewa, Ber. Akad. Wiss. Est. SSR, Chemie 28, Nr. 2 (1979).
- ³ A. Fredeslund, R. L. Jones und J. M. Prausnitz, AJChEJ 21, 1086 (1975).
- ⁴ A. Bondi, Physical Properties of Molecular Crystals, Liquids and Glasses. New York: Wiley. 1968.
- ⁵ E. Otsa, L. Kudrjawzewa und O. Eisen, 1. Mitt., Mh. Chem. 111, 37 (1980).